A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees
نویسندگان
چکیده
We present a line search algorithm for minimizing nonconvex and/or nonsmooth objective functions. The algorithm is a hybrid between a standard Broyden-Fletcher-Goldfarb-Shanno (BFGS) and an adaptive gradient sampling (GS) method. The BFGS strategy is employed as it typically yields fast convergence to the vicinity of a stationary point, and along with the adaptive GS strategy the algorithm ensures that convergence will continue to such a point. Under loose assumptions, we prove that the algorithm converges globally with probability one. The algorithm has been implemented in C++ and the results of numerical experiments are presented to illustrate the efficacy of the proposed numerical method.
منابع مشابه
Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization
Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.
متن کاملRandom Perturbation of the Variable Metric Method for Unconstrained Nonsmooth Nonconvex Optimization
We consider the global optimization of a nonsmooth (nondifferentiable) nonconvex real function. We introduce a variable metric descent method adapted to nonsmooth situations, which is modified by the incorporation of suitable random perturbations. Convergence to a global minimum is established and a simple method for the generation of suitable perturbations is introduced. An algorithm is propos...
متن کاملRandom perturbation of the projected variable metric method for nonsmooth nonconvex optimization problems with linear constraints
We present a random perturbation of the projected variable metric method for solving linearly constrained nonsmooth (i.e., nondifferentiable) nonconvex optimization problems, and we establish the convergence to a global minimum for a locally Lipschitz continuous objective function which may be nondifferentiable on a countable set of points. Numerical results show the effectiveness of the propos...
متن کاملBenson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کاملModify the linear search formula in the BFGS method to achieve global convergence.
<span style="color: #333333; font-family: Calibri, sans-serif; font-size: 13.3333px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-dec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program. Comput.
دوره 7 شماره
صفحات -
تاریخ انتشار 2015